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Motivation
To describe an experiment (a random experiment), we oftenly use
measures that allow us to summarize the available data. The “mean”
is one of that measures, since it helps us to localize the center of the
distribution. For example:

Example
Students that enroll the postgraduate in Finance have to complete 4
curricular units 2 of them with 10 ECTS and the remaining 2 with 5
ECTS. João has completed the postgraduate in Finance with the
following marks:

15 - course with 10 ECTS
13 - course with 10 ECTS
16 - course with 5 ECTS
14 - course with 5 ECTS

The average final grade of João was 14, since

15× 10 + 13× 10 + 16× 5 + 14× 5
30 = 14.(3)
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Discrete random variables

Let X be a a discrete random variable and let DX be the set of
discontinuity points of the cumulative distribution function X . For
generality, let us assume that the number of elements of DX is
countably infinite, that this DX = {x1, x2, ...} .
The probability function of X is given by

fX (x) =
{

P (X = x) , x ∈ DX
0 , x /∈ DX

Expected Value of a discrete random variable: The expected
value of a random variable, denoted as E (X ) or µX , also known as
its population mean, is the weighted average of its possible values,
the weights being the probabilities attached to the values

µX = E (X ) =
∑

x∈DX

x × fX (x) =
∞∑

i=1
xi × fX (xi ) .

provided that
∑

x∈DX
|x | × fX (x) =

∑∞
i=1 |xi | × fX (xi ) < +∞.
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Example
Let X be a discrete random variable such that

X =
{

1, if there is a success
0, otherwise

and P(X = x) =
{

p, if x = 1
1− p, if x = 0

.

The expected value of X is given by

E (X ) = p × 1 + (1− p)× 0 = p

Remarks:
If the number of elements of Dx is finite that this
DX = {x1, x2, ..., xk} where k is a finite integer, then∑

x∈DX
|x | × fX (x) =

∑k
i=1 |xi | × fX (xi ) and the condition∑k

i=1 |xi | × fX (xi ) < +∞ is always satisfied.
Note that µX can take values that are not in DX .
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Example: Let X be the random variable with the probability function

P(X = 2n) = 2−n, for all n ∈ N.

This means that P(X = x) = 0 for all x /∈ {2n : n ∈ N}. One can
notice that the probability function satisfies the conditions:

1) P(X = x) ≥ 0 for all x ∈ R;
2)
∑

x P(X = x) =
∑∞

n=1 2−n = 1/2
1−1/2

Additionally, one may easily notice that, the distribution does not
have expected value:

E (X ) =
∞∑

n=1
2n × 2−n =∞
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Expected values (or mean or expectation) of a continuous
random variable: If X is a continuous random variable and fX (x) is
its probability density function at x , the expected value of X is

µX = E (X ) =
∫ +∞

−∞
xfX (x)dx

provided that
∫ +∞
−∞ |x | fX (x)dx <∞.

Remark: Thus, the mean can be thought of as the centre of the
distribution and, as such, it describes its location. Consequently, the
mean is considered as a measure of location.

Example
Let X be a random variable with probability density function given by

fX (x) =
{

1
b−a , a < x < b
0, otherwise

.

Then, the expected value of X is
E (X ) =

∫ +∞
−∞ xfX (x)dx =

∫ b
a

x
b−a dx = b+a

2
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Expected value of a function of a discrete random variable: If
X is a discrete random variable and fX (x) is the value of its
probability function at x , the expected value of g (X ) is

E [g (X )] =
∑

x∈DX

g (x)× fX (x) =
∞∑

i=1
g (xi )× fX (xi ) .

provided that
∑

x∈DX
|g (x)| × fX (x) =

∑∞
i=1 |g (xi )| × fX (xi ) < +∞.

Expected value of a function of a continuous random variable:
If X is a continuous random variable and fX (x) is its probability
density function at x , the expected value of g (X ) is

E (g (X )) =
∫ +∞

−∞
g(x)f (x)dx .

provided that
∫ +∞
−∞ |g (x)| fX (x)dx <∞.
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Remarks:
The existence of E (X ) does not imply the existence of
E (g (X )) and the inverse is also true.
E (g (X )) can be calculated using the above definition or finding
the distribution of Y = g (X ) and computing directly E (Y ) .

Example: Let X be a discrete random variable with probability
function given by fX (x) = 1/3, x = −1, 0, 1 and Y = g(X ) = X 2.
We can compute E (X 2) if the following two ways:

By using the definition of expected value of a function of a
random variable

E
(
X 2) = (−1)2 fX (−1) + (0)2 fX (0) + (1)2 fX (1)

= 1× 1/3 + 0× 1/3 + 1× 1/3 = 2/3.
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Finding the distribution of Y and afterwards computing the
expected value of Y .

fY (0) = P(Y = 0) = P(X = 0) = 1/3
fY (1) = P(Y = 1) = P(X = −1) + P(X = 1) = 1/3 + 1/3 = 2/3.

Therefore,

fY (y) =


1/3, y = 0
2/3, y = 1
0, otherwise

.

Thus,
E (X 2) = E (Y ) = 0×fY (0)+1×fY (1) = 0×1/3+2×1/3 = 2/3.
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Example: Let X be a random variable such that

fX (x) =
{

1
b−a , a < x < b
0, otherwise

.

Then, the expected value of Y = 2X is

E (2X ) =
∫ +∞

−∞
2xfX (x)dx =

∫ b

a
2 x

b − a dx = 2
∫ b

a

x
b − a dx = b + a.

A different approach to calculate E (Y ) is to derive the distribution of
Y and afterwards to compute E (Y ).
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Indeed,

FY (y) = P(Y ≤ y) = P(2X ≤ y) = P(X ≤ y/2) = FX (y/2).

The density function can be obtaining differentiating the cdf FY :

fY (y) = F ′Y (y) = (FX (y/2))′ = 1
2 F ′X (y/2) = 1

2 fX (y/2)

=
{

1
2(b−a) , 2a < y < 2b
0, otherwise

Therefore,
E (Y ) =

∫ +∞

−∞
yfY (y)dy =

∫ 2b

2a

y
2(b − a) dy = b + a
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Properties of the expected value

The expected values satisfy the following properties:
E (a + bX ) = a + bE (X ) , where a and b are constants.
E (X − µX ) = E (X )− µX = 0.
If a is a constant, E (a) = a.
If b is a constant, E (b × g (X )) = bE (g (X )) .
Given n functions ui (X ) i = 1, ..., n and ,
E
[∑n

i=1 ui (X )
]

=
∑n

i=1 E [ui (X )] .
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Moments of a discrete random variable: The r th moment of a
discrete random variable (or its distribution), denoted as µ′r , is the
expected value of X r

µ′r = E (X r ) =
∑

x∈DX

x r × fX (x) =
∞∑

i=1
x r

i × fX (xi ) , for r = 1, 2, ...

provided that
∑

x∈DX
|x |r × fX (x) =

∑∞
i=1 |xi |r × fX (xi ) < +∞.

Moments of a continuous random variable: The r th moment of a
continuous random variable (or its distribution), denoted as µ′r , is the
expected value of X r :

µ′r = E (X r ) =
∫ +∞

−∞
x r fX (x)dx

provided that
∫ +∞
−∞ |x |

r fX (x)dx <∞.
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r th central moment of the random variable or r th moment of a
random variable about its mean

Central moments of a discrete random variable: The r th central
moment of a discrete random variable (or its distribution), denoted
as µr , is the expected value of (X − µX )r

µr = E
[
(X − µX )r ] =

∑
x∈DX

(x − µX )r×fX (x) =
∞∑

i=1
(xi − µX )r×fX (xi ) , for r = 1, 2, ...

provided that∑
x∈DX

|x − µX |r × fX (x) =
∑∞

i=1 |xi − µX |r × fX (xi ) < +∞.

Central moments of a continuous random variable: The r th

central moment of a continuous random variable (or its distribution),
denoted as µr , is the expected value of (X − µX )r :

µr = E
[
(X − µX )r ] =

∫ +∞

−∞
(x − µX )r fX (x)dx

provided that
∫ +∞
−∞ |x − µX |r fX (x)dx <∞.
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Example
Let X be a random variable such that fX (x) = 1

b−a if a < x < b, and
fX (x) = 0 if x /∈ (a, b).
The 2nd moment is∫ +∞

−∞
x2fX (x)dx =

∫ b

a

x2

b − a dx = 1
3 (a2 + ab + b2).

The 2nd central moment is∫ +∞

−∞
(x − µX )2fX (x)dx =

∫ b

a

(x − µX )2

b − a dx = (b − a)2

12 .

1 µ1 is of no interest because is it zero when it exists.
2 µ2 is an important measure and is called variance.
3 µ3 and µ4 are also important.
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Variance: the second central moment about the mean of a random
variable (µ2), also called variance, is an indicator of the dispersion of
the values of X about the mean.
The variance of a discrete random variable:

Var (X ) = σ2
X = µ2 = E

[
(X − µX )2

]
=
∑

x∈DX

(x − µX )2 × fX (x) ,

provided that Var (X ) < +∞.
The variance of a continuous random variable:

Var (X ) = σ2
X = µ2 = E

[
(X − µX )2

]
=
∫ +∞

−∞
(x − µX )2 fX (x)dx ,

provided that Var (X ) < +∞.
Remark: We can show that if µ′2 = E

(
X 2) exists, then both µX and

σ2
X exist.

Properties of the Variance:
Var (X ) ≥ 0.
σ2

X = Var (X ) = E
(
X 2)− µ2

X .
If c is a constant, Var (c) = 0.
If a and b are constants, Var (a + bX ) = b2Var (X ) .
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Example
Let X be a discrete random variable such that

X =
{

1, if there is a success
0, otherwise

and P(X = x) =
{

p, if x = 1
1− p, if x = 0

.

The expected value of X is given by

E (X ) = p × 1 + (1− p)× 0 = p
E (X 2) = p × 12 + (1− p)× 02 = p

Var(X ) = E (X 2)− (E (X ))2 = p(1− p)
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Example
Let X be a continuous random variable such that

fX (x) =
{

2x , 0 < x < 1
0, otherwise

.

Then,

E (X ) =
∫ +∞

−∞
xfX (x)dx = 2/3

and
E (X 2) =

∫ +∞

−∞
x2fX (x)dx = 1/2.

Therefore,
Var(X ) = E (X 2)− (E (X ))2 = 1

18
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Standard deviation: The variance is not measured in the scale of
the random variable as it is computed using the square function, in
order to obtain a measure of dispersion about the mean which is
measure in the same scale of the random variable we need to
compute the standard deviation. The Standard deviation is given by:

σX =
√

Var (X ).

Coefficient of variation: If we are interested in a measure of
dispersion which is independent of the scale of the random variable
we should use the coefficient of variation. The coefficient of variation
is given by

CV (X ) = σX
µX

.
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Example
Let X be a discrete random variable such that

X =
{

1, if there is a success
0, otherwise

and P(X = x) =
{

p, if x = 1
1− p, if x = 0

.

The expected value of X is given by

E (X ) = p × 1 + (1− p)× 0 = p
E (X 2) = p × 12 + (1− p)× 02 = p

Var(X ) = E (X 2)− (E (X ))2 = p(1− p)

Additionally,

σX =
√

p(1− p) and CV (X ) =

√
1− p

p
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Example
Let X be a continuous random variable such that

fX (x) =
{

2x , 0 < x < 1
0, otherwise

.

We have already computed

E (X ) = 2/3 and Var(X ) = 1
18 .

Therefore,

σX =
√

1
18 = 1

3
√

2
and

CV (X ) = σX
µX

= 1
2
√

2
.
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Skewness:
Beyond the location and dispersion it is desirable to know the
distribution behaviour about the mean. One parameter of interest is
the coefficient of asymmetry also known as skewness. This parameter
is a measure of asymmetry of a probability function/density about
the mean of the random variable. It is given by

γ1 =
E
[
(X − µX )3]

Var (X )3/2 = µ3

σ3
X

Remarks:
For discrete random variables a probability function is symmetric
if fX (µx − δ) = fX (µx + δ) for all δ ∈ R.
For continuous random variables the probability density function
is symmetric if fX (µx − δ) = fX (µx + δ) for all δ ∈ R
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Negative Skew Zero Skew

Positive Skew
µXµX

µX
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Example
Let X be a discrete random variable with probability function given by

fX (x) =

 0.25 , for x = −1
0.5 , for x = 0

0.25 , for x = 1
.

Note that

µX = E (X ) = (−1)× 0.25 + (0)× 0.5 + 1× 0.25 = 0

and

E (X 3) = (−1)3 × 0.25 + (0)3 × 0.5 + 13 × 0.25. = 0.

Therefore, fX (x) is symmetric about µX = 0 and γ1 = 0.

Remark: Note however that we can have γ1 = 0, and the probability
function/density is not symmetric about the mean, that is γ1 = 0
does not imply symmetry.
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Example
Let X be a discrete random variable with probability function given by

fX (x) =

 0.1 , for x = −3
0.5 , for x = −1
0.4 , for x = 2

.

Note that

µX = E (X ) = (−3)× 0.1 + (−1)× 0.5 + 2× 0.4 = 0.

Since fX (−1) 6= fX (1) , this function is not symmetric around
µX = 0. However

E (X 3) = (−3)3 × 0.1 + (−1)3 × 0.5 + 23 × 0.4. = 0,

and consequently γ1 = 0.
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Kurtosis:
The kurtosis measures the “thickness” of the ”tails”of the probability
function/density or, equivalently, the “flattening” of the probability
function/density in the central zone of the distribution.

γ2 =
E
[
(X − µX )4]
Var (X )2 = µ4

σ4
X
.

The kurtosis of the normal distribution is 3. We use this distribution
as reference, therefore we can define the excess of kurtosis as

γ′2 = µ4

σ4
X
− 3

Figura: Density of a normal distribution with mean 0 and variance 1.

µX
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Positive excess of kurtosis

µX

γ2 = 3

γ2 = 3.6

Negative excess of kurtosis

µX

γ2 = 3

γ2 = 2
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Quantiles: Other parameters of interest are the quantiles of a
(cumulative) distribution or quantiles of a random variable. Quantiles
have the advantage that they exist even for random variables that do
not have moments.
Definition: Let be X be random variable and α ∈ (0, 1). The
quantile of order α, qα is the smallest value among all points x in R
that satisfy the condition

FX (x) ≥ α.

Remarks:
If X is a discrete random variable qα ∈ DX .

The quantile 0.5 is called the median of a (cumulative) the
distribution function. It can also be interpreted as a centre of
the distribution and therefore it is also considered a measure of
location.
When the probability function/ density is symmetric the
median = mean.
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Example: Let X be a random variable such that

FX (x) =
{

0, x < 0
1− e−x , xx ≥ 0

What is the quantile of order 0.4?
Solution:We can start by solving

FX (x) = 0.4⇔ x = −ln(0.6) ≈ 0.5108

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0
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Let X be a discrete random variable such that

X =
{

1, if there is a success
0, otherwise

and P(X = x) =
{

p, if x = 1
1− p, if x = 0

.

It follows that

FX (x) =

 0 , for x < 0
1− p for 0 ≤ x < 1

1 , for x ≥ 1

1) Compute the quantile of order 0.5 when p = 0.2.
2) Compute the quantile of order 0.5 when p = 0.6.
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Fix p = 0.2:

q0.5 which is the smallest value among all points x in R that satisfy
the condition

FX (x) ≥ 0.5.

-0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Therefore, q0.5 = 0.
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Fix p = 0.6:

q0.5 which is the smallest value among all points x in R that satisfy
the condition

FX (x) ≥ 0.5.

-0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Therefore, q0.5 = 1.
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Remarks:
The qα are called quartiles if α = 0.25, 0.5, 0.75. Therefore the
first quartile is q0.25, the second quartile is q0.5 and the third
quartile is q0.75

The qα are called deciles if α = 0.1, 0.2,...,0.9. Therefore the
first decile is q0.1, the second decile is q0.2, etc..
The qα are called percentiles if α = 0.01, 0.02,. . . ,0.99.
Therefore the first percentile is q0.01, the second percentile is
q0.02, etc.
The interquartile range IQR = q0.75 − q0.25 is considered a
measure of dispersion.
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The mode: The mode of a random variable X or distribution is the
value mo(X ) that satisfies the condition fX (mo(X )) ≥ fX (x) , for all
x ∈ R, where fX (x) is the probability function in the case of discrete
random variables and it is the probability density function in the case
of continuous random variables.

Remarks:
1 The mode can also be interpreted as a centre of the distribution

and therefore it is also considered a measure of location.
2 In the case of discrete random variable the mode is the most

frequent value.
3 The mode does not have to be unique.
4 If the variable probability distribution/density is symmetric and

has only one mode, then the mode equals the median and the
mean.
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Example
Let X be a discrete random variable such that

X =
{

1, if there is a success
0, otherwise

and P(X = x) =
{

p, if x = 1
1− p, if x = 0

.

Fix p = 0.2:

It follows that mo(X ) = arg maxx∈R P(X = x) = 0.

Fix p = 0.6:

It follows that mo(X ) = arg maxx∈R P(X = x) = 1.

Fix p = 0.5:

It follows that mo(X ) = arg maxx∈R P(X = x) = 0 and 1.

In this case, there are two modes mo(X ) = 0 and mo(x) = 1.
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Example
Let X be a continuous random variable with density function

fX (x) =
{

0 , for x < 0
e−x for x ≥ 0

Compute the mode.
Solution: Since fX (x) = 0 for x < 0 and it is a decreasing function
for x ≥ 0, the mode is given by mo(X ) = 0.

Example
Let X be a continuous random variable with density function

fX (x) =
{

2x , 0 < x < 1
0, otherwise

There is no mode because the density function does not have a
maximum.

Carlos Oliveira Statistics I Chapter 3 : Expected values



Statistics I
Chapter 3 :

Expected values

Carlos Oliveira

Expected values
of a random
variables

Expected values of a random variables

The moment generating function: The moment generating
function is an important function in probability because it defines
uniquely the distribution function (when the moment generating
function is properly defined).

Definition: The moment generating function of a
discrete random variable is given by

MX (t) = E
(
etX) =

∑
x∈DX

etx × fX (x) =
∞∑

i=1
etxi × fX (xi ) ,

provided that it is finite.

Definition: The moment generating function of a
continuous random variable is given by

MX (t) = E
(
etX) =

∫ +∞

−∞
etx fX (x)dx ..

provided that it is finite.
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Remarks on the moment generating function (m.g.f.):
The m.g.f. may not exist.
If X is a discrete random variables and DX is finite, then there is
always a m.g.f.;
The moment generating function is a function of t not X ;
If there is a m.g.f., then there are moments of every order. The
reverse is not true.
A distribution which has no moments – or has only the first k
moments – does not have a m.g.f..
The moment generating function is used to calculate the
moments.
The m.g.f. uniquely determines the distribution function. That
is, if two random variables have the same m.g.f., then the
cumulative distribution functions of the random variables
coincide, except perhaps at a finite number of points.
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Theorem: Let X be a random variable with moment generating
function MX defined. Then,

d r MX (t)
dt r

∣∣∣∣
t=0

= µ′r = E [X r ] , r = 1, 2, 3, ...

Remark: This result allows us to compute the raw moment of X of
order k by computing the k th derivative and evaluate it at the point 0.
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Example: Let X be a random variable such that

fX (x) =


0.2, x = 0, 3
0.5, x = 1
0.1, x = 2
0, otherwise

By definition,

E (X ) =
3∑

x=0
xfX (x) = 0× 0.2 + 1× 0.5 + 2× 0.1 + 3× 0.2 = 1.3.

By using the moment generating function, we have

MX (t) =
3∑

x=0
etx fX (x) = 0.2(1 + e3t) + 0.5et + 0.1e2t .

Therefore,
M ′X (t) = 0.6e3t + 0.5et + 0.2e2t ,

and, consequently,
E (X ) = M ′X (0) = 1.3.
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Example
Let X be a discrete random variable such that

X =
{

1, if there is a success
0, otherwise

and P(X = x) =
{

p, if x = 1
1− p, if x = 0

.

The moment generating function MX (t) is given by

MX (t) = E (etX ) = (1− p)e0×t + pet×1 = (1− p) + pet .

The derivative of MX (t) in t is given by

∂

∂t MX (t) = pet .

Therefore,
E (X ) = ∂

∂t MX (t)
∣∣∣
t=0

= p
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Example: Let X be a continuous random variable with density
function

fX (x) =
{

0 , for x < 0
λe−λx for x ≥ 0

MX (t) = E
(
etX) =

∫ +∞

0
λe(t−λ)x dx

= λ lim
z→∞

∫ z

0
e(t−λ)x dx = λ lim

z→∞

[
e(t−λ)x

t − λ

]x=z

x=0

= − λ

t − λ,

provided that t < λ. Now

dMX (t)
dt =

d
(
− λ

t−λ

)
dt = λ

(t − λ)2

and, consequently,

E (X ) = dMX (t)
dt

∣∣∣∣
t=0

= 1
λ
.
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Proposition: Let X be a random variable such that MX is its
moment generating function. For a, b ∈ R,

MbX+a (t) = E
[
e(bX+a)t

]
= eatMX (bt) .

Proposition: Let Xi , with i = 1, ·, n be independent random
variables such that its moment generating function is given by MXi .
The moment generating function of a sum of independent random
variables Sn =

∑n
i=1 Xi equals the product of their m.g.f.(s).

MSn (t) = MX1 (t)×MX2 (t)× ...×MXn (t)

.
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